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We investigate the resonance conductance of a quantum point contact �QPC�, defined in a two-dimensional
electron gas of a high-mobility GaAs/AlGaAs heterojunction. The potential profile of the QPC channel can be
locally tuned by separately biasing the split gate and a cross gate, electrically isolated on the top of the QPC.
The conductance, evolving with the cross-gate voltages exhibits an oscillatory feature superimposed on the
quantized plateau in the positive bias voltages and a suppression of the plateau in negative bias voltages. Our
investigation suggests that the oscillations on the conductance result from the longitudinal resonance through
the channel. The governing parameters of the resonance are the aspect ratio of the channel and the Fermi
wavelength of the incident electrons.
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I. INTRODUCTION

One of the hallmarks of mesoscopic physics is the quan-
tization of the conductance in the ballistic transport of elec-
trons through a narrow constriction between two
reservoirs.1,2 A ballistic constriction known as a quantum
point contact �QPC� can be defined by electrostatically
squeezing the two-dimensional electron gas �2DEG� of a
high mobility heterostructure using a metallic split gate. The
two-terminal conductance G exhibits plateaus in units of
2e2 /h as a function of the split-gate voltages Vsg. The quan-
tization of G results from the adiabatic transmission of the
spin-degenerate one-dimensional �1D� subbands, formed in
the QPC channel. The width of the channel and the electro-
static potential of the QPC change with Vsg; hence, the sub-
band energies alter accordingly. Whenever the bottom of the
subband energy crosses the Fermi energy EF, one of the oc-
cupied 1D subbands is depopulated and the conductance
jumps by 2e2 /h, yielding a steplike feature in the G-Vsg
traces.

The quantization on G is known to be sensitive to the
process of how the electrons are injected and emitted through
the constricted 1D channel.3,4 The degree of flatness of the
plateau, the precision of the quantized values and the sharp-
ness of the steps are closely related to the detailed shape of
the electrostatic potential in the constriction region.5–13 Nu-
merous theoretical calculations show that the precious pla-
teau persists only for an optimum geometry; otherwise, the
step features of G are either smeared out or imposed on an
oscillatory structure due to the resonant longitudinal electron
states in the constrictions. Experiments have been conducted
to explore the nature of the resonances.3,4,14 However, a de-
tailed comparison of the experiments to the theories is diffi-
cult. This is because any unavoidable imperfection, such as
the presence of an impurity in the channel, can affect the
transmission and cause the resonance feature to be device
dependent.15

In this paper we study the resonance conductance in a
QPC by integrating a cross gate on top of the QPC, as dis-

played in Fig. 1�a�. Biasing the cross gate provides a unique
technique to continuously vary the QPC potential in a con-
trolled manner. This approach enables us to investigate the
evolution of the resonance conductance on the quantized
plateau.

II. EXPERIMENTAL RESULTS AND ANALYSIS

A. Device layout and experimental setup

The devices were fabricated on a GaAs/AlGaAs hetero-
structure, containing a 2DEG at 80 nm below the surface and
with an electron density of ns=2.1�1011 cm−2 and a mobil-
ity of �=1.1�106 cm2 /V s at 4.2 K. The device consists of
a split gate and a top cross gate, as schematically displayed
in Fig. 1�a�. Figure 1�b� shows the scanning electron micro-
scope �SEM� image of the device. A mesa structure is de-
fined by wet etching and all of the metal gates are patterned
by electron-beam lithography. The point contacts are formed
by applying negative voltages to the split gate. The litho-
graphic channel width and length of the QPC are 300 nm and
310 nm, respectively. A cross gate is electrically isolated
from the QPC by a 170-nm-thick overexposed PMMA �Poly-
methyl methacrylate�, which serves as spacer layers to de-
crease the local capacitance. The cross gate is designed to be
located on top of the split gate and transversely across the
center of the conducting channel. Thus, the cross gate can be
used to fine tune the barrier potential in the channel. The
variance of the cross-gate position due to the lithographic
alignment error in different devices is about �10 nm. The
experimental results presented in this paper are obtained
from three devices. All devices display consistent behaviors,
regardless the thermal cycles. The experiment is carried out
in a 3He cryostat with a 300 mK base temperature or in a
dilution refrigerator with a base temperature of 25 mK. Two-
terminal conductance measurement was made by applying a
low-frequency ac bias voltage Vrms�10 �V �17 Hz� to the
source contact while the drain contact was grounded.
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B. Resonant conductance in a quantum point conduct

Figure 2 shows G of Sample 1 as a function of the split-
gate voltage Vsg and the cross-gate voltage Vcg at a tempera-
ture T=0.3 K and in the absence of the magnetic field, B
=0 T. The integer plateaus are duly observed. The pinch-off
voltages Vp of the split gate on each G-Vsg trace vary with
Vcg and can be expressed as Vp�−0.17�Vcg−1.38 V. The
linear dependence of Vp on Vcg suggests that Vcg affects the
confining potential in the QPC channel and changes the car-
rier density within. Because the cross gate is �250 nm
above the 2DEG and locates further away than the split gate,
it can induce a potential modulation much wider than its
width.

Close examination of Fig. 2 shows that, as associated with
the shift of the plateau positions, the detailed plateau feature
gradually evolves with Vcg. To clearly reveal the changes in
the plateau details, Fig. 3 illustrates the enlarged portions of
the last three plateaus in three devices measured. For clarity,
here Vsg is offset to �Vsg, so that only the plateau region is
displayed. Figures 3�a�–3�c�, Figs. 3�d�–3�f�, and Figs.
3�g�–3�i� are extracted from Sample 1, Sample 2, and
Sample 3, respectively. For comparison, each subfigure of
Fig. 3 displays two traces with two representative Vcg’s of
each sample. The black traces are used for small or positive
Vcg; in contrast, the red traces are used for more negative Vcg.

Depending on the polarity and the magnitude of Vcg, the
plateau develops into different features. When Vcg is small, a
ripple feature already emerges on the steplike conductance.
The oscillatory characteristics become more pronounced for
higher-order plateaus or for positive Vcg. As the cross gate is
more negatively biased, the oscillations on the G steps tends
to become less visible or even disappears. The appearance
and suppression of oscillatory structures on G associated
with different gating conditions are generally found in the
three samples. It should be noted that all plateaus are below
their ideal quantization values, indicated by the dashed lines
in Fig. 3. After subtracting the residue and the contact resis-
tances in series with the QPC, the deviations from the exact
quantization are estimated within 6–10 %. The prerequisite
for accurate quantization is that the plateaus are flat but the
oscillations inhibit the exact quantization.

We now wish to interpret the experimental findings. The
appearance of the oscillatory features, as Vcg is positive, sug-
gests that biasing the cross gate not only causes a modulation
of the carrier density in the channel but also subtly deforms
the channel potential. The correlations between the confining
potential and the profile of conductance step have been
widely studied.5–13 The potential near the middle of QPC can
be approximated by a saddle point with curvatures �x and
�y, where x is the transport direction.13,16 When �y is larger,
namely, when the potential profile is steeper, the spacing of
energy levels becomes wide, which results in longer
plateaus.

For the oscillatory feature, it has been predicted and re-
lated to a Ramsauer-type resonance in the transmission,5,6

i.e., the oscillations are due to the constructive interference
between reflected and incoming waves within the QPC chan-
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FIG. 1. �Color online� �a� A schematic drawing of the cross-
sectional view of the device. �b� An SEM image of the device.
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FIG. 2. �Color online� Conductance of Sample 1 as a function of
the split-gate voltage Vsg and the cross-gate voltage Vcg. Vcg is
scanned from −2 to 1.0 V in steps of 40 mV at T=0.3 K. The red
points P1, P2, and P3 are marked for the simulation of the channel
potential, discussed in Sec. II C. The enlarged plateau features of
the traces marked by the arrows are displayed in Figs. 3�a�–3�c�.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)1.2

1.0

0.8

2.2

2.0

1.8

3.2

3.0

2.8

-20 0 20 -20 0 20 -20 0 20

G
/(
2e
2 /
h)

n=1 n=1 n=1

n=2 n=2n=2

n=3 n=3 n=3

Sample 1 Sample 2 Sample 3

FIG. 3. �Color online� The enlarged last three plateaus of the
three samples. �a�–�c� for Sample 1 at T=0.3 K, �d�–�f� for Sample
2 at T=30 mK, and �g�–�i� for Sample 3 at T=30 mK. The black/
red curves represent Vcg=0.8 V /−2 V for Sample 1, 0.0 V /
−1.84 V for Sample 2, and −0.6 V /−1.85 V for Sample 3,
respectively.
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nel. To gain an intuitive view of the physical origin of the
oscillations, we note that as noninteracting electrons with
energy E in a one-dimensional wire encounter a square-
barrier potential of length L and height V0, the transmission
probability T for E�V0 equals

T = �1 + sin2�kL�/�4�E/V0��E/V0 − 1���−1,

where kL=L�2m0�E−V0� /� and m0 denotes the mass of the
charge carriers.17 G can be described by the Landauer for-
mula, G= �2e2 /h�T.18 Hence, the sine term of T causes the
oscillations on G when we vary E /V0.

The oscillations in a QPC can be viewed as the transmis-
sion resonates with standing waves in between the edges of
both ends of the constrictions, as the boundary condition
kxL=N	 is satisfied, where kx is the longitudinal wave vec-
tor, L is the channel length, and N is the number of oscilla-
tions. If the widening of the constriction changes sufficiently
gradual, the transport is adiabatic and the oscillations disap-
pear. More rigorous calculations demonstrate that N is a
function of the aspect ratios L /W and Fermi wave vector kF
of the electrons in the channel, where W is the width of the
QPC channel.5,6,11,12 The oscillatory feature is more pro-
nounced for larger L /W or larger kF.

Ramsauer-type oscillatory features can also be induced by
the presence of impurity scattering in a quasi-one-
dimensional wire.15,19 Strictly, it is difficult to completely
rule out the interference signal involving the impurity scat-
tering or the device defects in our experiment. However, the
distinct oscillatory features on G are reproducible in the three
devices. This implies that the observed oscillations and their
changes are unlikely dominated by a random disorder scat-
tering process but resulted from a genuine interference phe-
nomenon residing in the channel.

Experimentally, we estimate L�250 nm based on the
lithographic size of the device and the depletion regions
around the split gate. Within the last three plateaus con-
cerned, L can be considered to be almost unchanged. Thus,
the number of oscillations on a plateau is proportional to kx.
Upon decreasing W with more negatively biasing Vsg, the
Fermi level crosses a sequence of 1D subbands. kx in the
threshold of the �n+1�th subband decreases from kx
= �2m�En /�2�1/2 to 0, where the nth subband with energy
spacing En=��y begins to be depopulated.

To substantiate the above interpretations with our obser-
vations, we extract the relevant parameters, L /W and kF,
governing the resonant oscillations. We select the second pla-
teau as an example and evaluate E2 by applying a magnetic
field perpendicular to the QPC to depopulate the magneto-
electric subbands.3,20 Ignoring spin degeneracy and consider-
ing a parabolic confining potential, we can express the num-
ber of occupied subbands n as n=int�EF /��+1 /2�, where
�=��y

2+�c
2 is the hybrid parabolic confinement parameter

�y and the cyclotron frequency �c=eB /m�. m�=0.067m0 is
the effective mass of electrons. Figure 4 shows the conduc-
tance in the presence of the magnetic field for two represen-
tative Vcg of Sample 2. When the magnetic field is stronger,
the plateau width becomes widen, reflecting a larger �. For a
comparison with our data, we adopt the calculations in Ref. 4
and define an effective channel width Wpar as Wpar

	2�kF /m��y =n1D /ns, where n1D is the number of electrons
per unit length in the channel and ns=kF

2 /2	 is the 2DEG
sheet density. Hence, n can be rewritten as

n = int
1

2
+

1

4
kFWpar�1 + �Wpar/2lc�2�−1/2� , �1�

where lc	�kF /eB. It should note that here we consider kF of
the 2DEG near the QPC and assume kF is the same as that
inside QPC channel. Equation �1� describes that more nega-
tively biasing Vsg changes n by reducing both Wpar and kF
�through the change in ns�. As Vsg is fixed, then n can be
depopulated by B �through the change in lc�. The insets of
Fig. 4 display the corresponding n versus B−1 for Vsg
=−1.12 and −0.66 V, chosen where the magnetic depopula-
tion of the second subband is observed. kF and �y can be
obtained by the fit of Eq. �1� to the data. kF, the second
subband energy E2=��y, the derived Wpar, and n1D are sum-
marized in Table I. The subband spacing E2 and the ratio
L /Wpar increases with more positive biasing of the cross gate
or with more negative biasing the split gate. For larger E2,
great variation in Vsg is required to depopulate a new sub-
band and gives more N. The larger L /Wpar results in stronger
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FIG. 4. The conductance G of Sample 2 as function of Vsg at
several values of the magnetic field at 0.3 K. The curves have been
offset for clarity. �a� Vcg=1 V. �b� Vcg=−1.5 V. The insets show
the number of occupied subbands, n, as a function of the inverse
magnetic fields at the fixed Vsg, where Vsg=−1.12 V for �a� and
Vsg=−0.66 V for �b�, marked by the dashed lines. The solid lines of
the insets are the theoretical curves according to Eq. �1�.

TABLE I. Values of the subband spacing E2=��y, the Fermi
wave vector kF, the effective width Wpar, and the channel carrier
density n1D.

Vcg /Vsg

�V�
E2

�meV�
kF

�1/nm�
Wpar

�nm�
n1D

�106 cm−1�

−1.5 /−0.62 1.12 0.083 169 1.85

−1.5 /−0.66 1.22 0.073 136 1.16

+1.0 /−1.05 1.83 0.106 132 2.38

+1.0 /−1.12 2.15 0.097 103 1.55
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resonance, giving more apparent oscillations, as theories
predict.5,6,11,12 It explains why the oscillatory features are
more pronounced as Vcg becomes more positive for a given
n, as shown in Figs. 2 and 3.

Next we wish to address the evolution of the oscillations
in different plateaus at a given Vcg. We note that less negative
biasing of the split gate not only increases L /Wpar and E2 but
also reduces kF. In contrast to larger L /Wpar and E2, the
smaller kF is expected to abate the oscillation strength.5

Therefore, the occurrence of the oscillations depends on the
delicate competition between L /Wpar and kF. For the black
curves shown in Fig. 3, kF plays a dominant role in the oc-
currence of the oscillations, compared with the aspect ratio
of the channel, so the resonant oscillations are less visible at
smaller n. However, for the red curves shown in Fig. 3, these
bump features found on the n=1 plateau of Sample 2 and
n=1 and 2 plateaus of Sample 3 may suggest the resurgence
of resonance state due to larger L /Wpar. The overall features
of our findings agree well with the theoretically predicted
general behaviors of resonance conductance. Our experi-
ments demonstrate the evolution of resonance conductance
in a QPC with the governing parameters, L /W and kF.

C. Temperature, magnetic field, and biasing voltage effects
on the resonance conductance

In this section we investigate the rigidity of the resonant
states against B, T, and a dc source-drain voltage Vsd. As the

cyclotron radius is comparable to the characteristic length of
the resonant states, i.e., the size of the QPC ��300 nm�, the
resonant states can be seriously affected. Figure 5�a� shows
that the oscillatory G is washed out at B�0.2 T, and that the
cyclotron radius is �290 nm. Moreover, the resonance
structure can also be smoothed by both thermal and voltage
broadening of the conductance.3,5,6 As an appropriate energy
window on the Fermi surface is opened either by thermal
broadening or voltage broadening, the quantized energy lev-
els become less important. Consequently, the resonance fea-
tures tend to be averaged out.3,21 Figures 5�b� and 5�c� reveal
the degradation of the oscillations with elevated T�0.9 K
and increased Vsd�0.34 mV, respectively. The correspond-
ing thermal averaging over an energy window on the order of
4kBT�0.3 meV consists of the energy range for the voltage
broadening eVsd.

A recent theoretical study indicated that for a nanostruc-
ture embedded in a quasi-one-dimensional wire under a mag-
netic field the conductance may either exhibit distinct reso-
nant features on the plateau due to the formation of
quasibound states in the vicinity of the attractive scattering
center or be suppressed in a repulsive scattering potential.22

The theoretical calculations of Ref. 22 predicted G can dras-
tically change with the inclusion of a scattering potential
under the magnetic field in a range around B=1 T. Figure
5�d� shows that G is measured at B=1 T. Within the range
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FIG. 5. �Color online� Comparison between conductance pla-
teaus as a function of Vsg obtained at: �a� B=0 and 0.2 T, with
Vcg=0 V and T=0.3 K; �b� T=0.35 and 0.9 K, with Vcg=1 V and
B=0 T, and �c� Vsd=0 V and 0.34 mV, with Vcg=0 V, T
=30 mK, and B=0 T. �d� The conductance is plotted as a function
of Vsg and Vcg at B=1 T. The plateaus are longer as Vcg is more
negatively biased. Fine conductance fluctuations are observed and
more pronounced on the third plateau. The data in �a�, �b�, and �d�
were taken from Sample 1 and �c� was taken from Sample 3.
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FIG. 6. �Color online� �a� A schematic to illustrate the model for
the simulation of the potential profile around the QPC. The electro-
static potential energy e
�x ,y� modulated by the split and cross
gates is calculated by three charged lines represented by the thick
black lines. �b� The distribution of potential energy is plotted with
the realistic parameters from the experiment: L=W=3, H=0.8, l
=10, and h=2.5 �all in units of 100 nm�. The green and red surfaces
representing the �Vsg ,Vcg�= �−1.44,0.8� V and �−0.95,−2� V, re-
spectively. For �c� and �d�, the effective potential energy is plotted
as a function of x at y=0. Panel �c� is for Vcg=0.8 V and �d� is for
Vcg=−2.0 V. The bold/dotted curves represent the Vsg at the left/
right ends of the n=2 plateau.
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of potentials tuned by Vcg, G displays a sharper transition
between plateaus, and the predicted conductance features are
unobservable. The absence of pronounced resonant states at
finite B provides indirect evidence that the disorder-related
backscattering may be neglected in our devices, and the os-
cillations observed at B=0 T most likely result from a genu-
ine resonance effect.

Conductance fluctuations, predominantly on the third, less
on the second and nearly invisible on the first plateau, is
found. The fluctuations resemble the universal conductance
fluctuations. Since the QPC has a longer channel length and
the lc at B=1 T can be less than the channel width at higher
n, we speculate that fluctuations may arise from the en-
hanced specular backscattering at the exit of the constriction
or boundary scattering at the channel wall irregularities. The
transmission probability decreases with the narrowing of the
channel; and, the fluctuation amplitudes are dampened.

D. Numerical model calculations

We have elaborated oscillations on G plateaus in terms of
the longitudinal wave resonances based on the �y, L /Wpar,
and kF determined experimentally in Sec. II C. It would be

instructive to reveal that the oscillations can indeed occur
due to the nature of the electrostatic potential of the QPC in
the present device layout. Should the confinement in QPC be
simulated by an infinite square wall, its geometry will be
crucial to determine the number of oscillation periods occur
within the variation in Vsg for the plateau.5,6 Instead of doing
such an approximation, we calculate and use the full electro-
static potential of the QPC due to the gate voltages to ac-
count for all plateau features. We only study the last three
plateaus, where the bottom of the conduction band is left up.

We assume the amount of charge accumulated on the
gates to be proportional to the gate voltage, which enables us
to obtain a potential profile �shown in Fig. 6�. The model
used to simulate the potential profile is illustrated in Fig.
6�a�, where W denotes the width of the QPC and L�l� and
H�h� represent the length and height of the split �cross� gate,
respectively. Since the cross gate is far away from the 2DEG
plane, we can treat it as a charged line. Equation �2� ex-
presses the electrostatic potential energy e
�x ,y� seen by
electrons in the 2DEG due to the gates alone. Here we as-
sume that the electric effect resulting from the complicated
layer structures can be incorporated into the two parameters
� and �,23


�x,y� = − �Vsg�ln
L

2
− x +���L

2
− x�2

+ �W

2
+ y�2

+ H2�
−

L

2
− x +��L

2
+ x�2

+ �W

2
+ y�2

+ H2 � + ln
L

2
− x +���L

2
− x�2

+ �W

2
− y�2

+ H2�
−

L

2
− x +��L

2
+ x�2

+ �W

2
− y�2

+ H2 ��
− �Vcg ln

l

2
+�x2 +

l

2
2 + h2

−
l

2
+�x2 +

l

2
2 + h2� . �2�

As an even function of y, Eq. �2� can be reduced to a
simple-harmonic potential by Taylor expanding around the
QPC position at y=0.13,16 Its corresponding eigenvalues
�n−1 /2��y are then used in defining an effective potential
energy along the transport x direction,23

Veff�x� = e
�x,y = 0� + �n − 1/2���y�x� , �3�

where �y =�e
��x ,y=0� /m�. Note that in the center of the
QPC channel, �y can be viewed as proportional to ���Vsg�.
Strictly, both coefficients � and � in Eq. �2� may vary with
Vcg and Vsg. To simplify, we ignore the small variations and
treat them as constants. As the Veff for each n passes through
the Fermi surface, i.e., Veff=EF, the conductance experiences
the Gn plateaus. Therefore, the magnitudes of coefficients �
and � can be estimated by setting them equal to the potential
Veff from Eq. �3� at the left ends of the plateaus. As an ex-
ample, we select three such points marked in Fig. 2, where

�Vsg ,Vcg� equals �−1.52,0.8� V, �−1.03,−2.0� V, and
�−1.44,0.8� V for points P1 and P2 at the n=1 plateau and
P3 at the n=2 plateau, respectively. By setting Veff at P1

equal to that at P2, and that at P1 equal to that at P3, we
obtain �=2.24�10−3 and �=4.44�10−4. Figure 6�b� illus-
trates two curves of e
�x ,y� for �Vsg ,Vcg�= �−1.44,0.8� V
and �−0.95,−2� V, where EF is shown for reference.

Next, we discuss the length of the conductance plateaus.
Take the green surface corresponding to Vcg�0 in Fig. 6�b�,
for instance. The curvature in the y direction of the green
surface is larger than the red surface; therefore, a more nega-
tive Vsg is required for the green surface than for the red
surface with a negative Vcg to remain at the same plateau.
The former case compacts the electronic wave function and
widens the energy spacing ��y. This implies that a greater
variation in Vsg is required to reach the next energy level,
which renders a longer plateau.13
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For this work, a detailed distribution of the potential is
calculated and is allowed to vary as the gate voltage changes.
We count the number of oscillations by using the WKB ap-
proximation: N=�dx�2m��EF−Veff�x�� /h. Figures 6�c� and
6�d� show the profiles of Veff�x� with the Vsg and Vcg values
that correspond to the beginning and end positions of the
plateau, displayed as the dotted and solid lines, respectively.
We find that the vertical spacing between these two curves is
wider in panel �c�, indicating that a wider range of potential
energy is required to sweep through the plateau. This conse-
quently allows more oscillations. To compare this with the
number of oscillations �N observed in the experiments, we
can determine �N by subtracting the N values obtained at the
dotted and solid lines. We estimate that the ratio �N�Vcg
=0.8 V� /�N�Vcg=−2 V��1.3 for the n=2 plateau. Com-
pared with the oscillations displayed in Fig. 3�c�, the calcu-
lated ratio agrees well with the experimental observations.
Our present model is too simplified to evaluate the exact �N.
For a more precise analysis, a more sophisticated model and
self-consistent calculation must be employed.

III. CONCLUSIONS

We have observed a resonance structure superimposed on
the conductance plateau of a QPC with a cross gate electri-

cally isolated on top of the QPC channel. The channel po-
tential of the QPC can be separately tuned by biasing the
cross gate and the split gate. Associated with the delicate
modulation of the potential profile, the continuous evolution
of the conductance plateaus from the suppression of the pla-
teau to the oscillations is observed. By depopulating the sub-
bands in the perpendicular magnetic fields, we determine the
subband energy, the Fermi wavelength and the effective po-
tential width of the narrow channel under different gating
conditions. Our analysis suggests that the observed oscilla-
tory features originate from longitudinal wave resonances in
the channel. The oscillatory behaviors reflect the aspect ratio
and the Fermi wavelength of the channels. Finally, we pro-
pose a simple model to numerically describe the nature of
the resonance behaviors observed in these experiments.
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